
ZASMB Documentation

 "zasmb"
 A Zilog mnemonic assembler
 (C) P.F Ridler 1984
 Permission is granted, without fee, for non-commercial
 private or educational use of this program.

 Use for purposes other than the above
 may be arranged by agreement with

 P.F Ridler,
 4, Lewisam Ave.,
 Chisipite,
 Zimbabwe.

 0.0 Contents.
 0.0 Contents.
 0.1 Introduction.
 0.2 General remarks on the capabilites of "zasmb".
 1.0 Getting started. How to use the assembler.
 2.0 Assembly language.
 2.1 The character set.
 2.2 Statements.
 2.2.1 Labels.
 2.2.2 Operators.
 2.2.2.1 Pseudo-operators.
 2.2.3 Operands.
 2.2.4 Comments.
 3.0 Error messages.
 3.1 Error recovery.
 4.0 Options.
 5.0 Detail of pseudo-operators.
 6.0 Known bugs.
 7.0 Files on this disc.
 8.0 Expression syntax.
 0.1 Introduction.
 "zasmb" is a vanilla flavoured assembler for machines
 based on the Z80 microprocessor. It does not produce
 relocatable code, it does not handle macro-instructions and it
 does not have any fancy operators. It does have the capability
 to read source statements from more than one file, it does have
 conditional assembly facilities and it is both fast and cheap.
 It has been used by its author over several years for very simple
 jobs and for assembling complex programs such as compilers and
 has not been found wanting.
 The main requirement for producing relocatable code goes
 this way. "I have a very large program which I am writing in
 parts. Why should I constantly reassemble those parts which are
 are already written and tested? If they are partially assembled
 in relocatable form then I can save time by just linking them
 into the piece of the program which I am currently testing".
 There are some very valid counter arguments. Assemblers
 are no longer as slow as they were. The time "zasmb" takes to
 assemble a source program of 3500 lines to an executable code
 file is about 30 seconds using a ram disc emulator. There is no
 linking time at all. To try to save time over this sort of
 performance is hardly worthwhile.
 When a program is in the process of being written in
 parts it is very seldom that one part is really finished and
 tested; the process is iterative and usually a major change in

 one part will involve minor changes to other parts, which then
 have to be reassembled. There are such routines as those which
 display a message or open a file, which will not require
 amendment but these should be stored in a library, and this can
 be done whether they are in relocatable or source code form.
 The matter of macro-instructions is another matter
 altogether. There are people who are very fond of macros: the
 author is not one of them. Their main use is for the
 development of pseudo-languages, and for this purpose they are
 vital if no compiler-compiler is available. They can also save
 a little typeing effort if several similar subroutines are used
 in the same program, but here there is a danger in that the
 programmer may try to tailor the program to suit the available
 macros rather than writing code to suit the problem which the
 program is to solve.
 "zasmb" is sufficiently fast that relocatable code
 offers little or no advantage in speed and it can, by using an
 "include" statement, use source code segments from a library.
 "zasmb" is an assembler for the Zilog/Mostek Z80-CPU
 microprocessor. It is designed to run under the CP/M operating
 system from Digital Research. On a Z80 microprocessor based
 system. "zasmb" will run in a 32K CP/M system but will
 accommodate larger programs in more memory up to the maximum
 of 64k bytes addressable by a Z80 system.
 "zasmb" assembles at over 7000 lines per minute using
 a 4MHz Z80-based machine with a solid state disc emulator. It
 could probably be made to perform faster if the source input
 routines were improved, but it is thought that the improvement
 which might be obtained would not justify the effort involved.
 "zasmb" reads a source (.Z80) file produced by a text
 editor and produces an object code (.COM) file. and an optional
 listing (.LST) file.

 1. Getting started.
 To use "zasmb" a source file having a file type
 (extension) ".Z80" must be prepared in Zilog mnemonics and this
 is assembled by issuing the CP/M command
 <d>:zasmb : <name>
 where <d> is the letter of drive on which the source file resides
 and is the name of the .Z80 source file.
 The input file must have an extension of ".Z80" and the
 output file will have an extension of ".COM" if it is created.
 A .COM file will not be produced if there are errors signalled
 during assembly. A .LST file will be created if the "list on"
 statement has been included in the program irrespective of
 whether there are errors in the program or not. Even if a
 listing is not requested any errors that occur will be listed.

 2. Assembly language.
 The assembly language mnemonics used by "zasmb" are
 those in the Zilog manual.

 2.1 Character set.
 The character set recognised by the assembler consists
 of the letters:
 abcdefghijklmnopqrstuvwxyz
 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 @_
 the digits: 0123456789
 and the special characters: + - | * / &

 The assembler does not distinguish between upper and

 lower case versions of the same character except within text
 strings.
 Text strings may contain any of the printable characters
 in the ASCII set.

 2.2 Statements.
 The form of an input statement is:
 [label[:]] [operator [expression [,expression]]] [;[text]]
 where the fields in braces are optional. If all the optional
 fields are omitted a blank line results, which is acceptable to
 the assembler.
 Between the fields any number of blank or tab characters
 may be present but within fields other than there may be
 no or characters.
 The length of an input statement is limited to 80
 characters.
 The assembler recognises four fields in a statement
 (line). These are:
 labels,
 operators,
 operands,
 comments.
 Any two fields must be separated from each other by at
 least one space or character.

 2.2.1 Labels.
 Labels must start in the first column of a line and may
 consist of up to 7 characters. (The number of characters in a
 label may be increased by altering the constant "mxnmch" and
 reassembling.) The first character of a name must be a letter
 but subsequent characters may be either letters or digits.
 The symbols "_" and "@" are regarded as letters and may
 be included in labels.
 Upper case and lower case letters are interpreted as
 being identical except when included in text strings.
 A label must start with a letter in column 0. It may
 consists of from 1 to 7 characters and digits, and, optionally,
 it may be followded by a colon, with no space between the last
 character and the colon. The maximum number of characters was
 chosen to be compatible with the normal tabulation columns
 0,8,16 etc. and is not a fundamental limitation in the
 assembler program. A few minor changes to the progam would
 allow names to be longer.
 The following labels are reserved for the Z80
 registers:
 a,b,c,d,e,f,h,l,i,r,af,bc,de,hl,ix,iy,sp

 2.2.2 Operators.
 The operator, if present, must be separated from the
 label (or ":") by at least one or character. The
 operators are those from the Zilog mnemonic set together with
 some pseudo-operators which are in common use.
 The complete set of operators is:
 add adc and
 bit
 call ccf cp cpl cpi cpir cpd cpdr
 daa dec di djnz
 ei ex exx
 halt
 im0 im1 im2
 in ini inir ind indr inc
 jp jr ld ldi ldir ldd lddr
 neg nop

 or out outi otir outd otd
 push pop
 res ret reti retn rst rlca rla rrca
 rra rlc rl rrc rr rld rrd
 scf set sub sbc sla sra srl
 xor

 The Z80 manual gives the forms
 or a
 cp const
 which are inconsistent with the form
 add a,b
 "zasmb" allows the forms
 or a,a
 cp a,const for the sake of consistency.
 The manual is also unclear whether the interrupt mode command
 should be
 im 0 or im0

 so that the forms "im0", "im1" and "im2" have been used because
 they are easier to implement.

 2.2.2.1 Pseudo-operators.
 The set of processor operators is augmented by the
 assembler instuctions:
 equ db dw ds list include
 defb defw defs read
 org forg end if endif
 where the forms on the second line are alternatives to those
 above them.
 For a description of the individual pseudo-operators see
 Section 5.

 2.2.3 Operands.
 The operand field of a statement may contain none, one or
 two operands. If there is more than one operand, they must be
 separated by a comma.
 Operands comprise one of the following forms:
 a number,
 a label,
 the program counter "$",
 a string,
 an expression composed of the above.
 For a description of the syntax of expressions see
 Section 8.

 2.2.4 Comments.
 A comment consists of a semi-colon folllowed by optional
 explanatory text. It must be the last (or the only) field on
 a line, and may not continue beyond the end of the line.

 3.0 Error messages.
 Errors detected during assembly are always displayed on
 the console and are entered into a .LST file even if the source
 file does not include a "list on" statement.
 The following text is a copy of the list file of a program
 which has errors in it.

 0 list on
 1 ;
 2 ;
 A 3 0100 78 ld a,bc

 ^ Argument error
 U 4 0101 2A0000 ld hl,(abc)
 ^ Undefined name
 X 5 0104 79 ld a,c,
 ^ Extra character ","
 A 6 0105 61626364 db 'abcdef
 6566
 ^ Argument error
 7 ;
 8 ;
 9 010B

 Column 0 holds a single letter abbreviation of the error
 message while underneath the erroneous line there is an arrow
 pointing to the approximate position of the error followed by a
 fuller error message. If the "list on" statement were not
 present in source file, then there a .LST file would still be
 generated but only those lines which have errors would be listed
 together with their error messages.

 3.1 Error recovery.
 When the assembler encounters an error it display on the
 console, below the error message, the additional message
 Edit, Continue or Quit? (E|C|Q)
 The "C" and "Q" replies are obvious but the "E" is not. If the
 "Edit" option is exercised the assembler writes into the CP/M
 CCP buffer the command line
 zedit d:name.z80
 followed by the row and column
 numbers of the position of the error and then jumps to the base
 of the CCP, which is not overwritten by the assembler. This
 invokes the editor and positions the cursor at the error
 position. This facility must be disabled if the user's editor
 will not respond to line and column arguments.
 Disabling the communication with the editor is done by
 changing the statement
 edit equ true
 near the beginning of "zasmb.z80" to
 edit equ false
 The effect will be to make the "E" reply the same as "C"
 This feature of the assembler has been found to speed up assembly
 language program development considerably. For further detail
 see the file "comments.pfr".

 4. Options.
 There is only one option. This is the Intel "Hex" option.
 If the command line has the token "hex" ("h" will suffice)
 following the filename as in
 zasmb d:name hex
 an "Intel hex" code file will
 be generated instead of an executable .COM file. This file will
 have the extension .HEX and must be loaded into memory using
 either "DDT" or "zload".

 5.0 Pseudo-operators.
 "zasmb" has a number of assembler directives or "pseudo-
 -operators. Most of these occur in other assemblers except for
 "forg" the "false origin" directive. These pseudo-operators are
 described in detail in the sections following.

 5.1 db (or defb)
 This pseudo-operator defines a byte or a sequence of
 bytes to have the values calculated from the list following.

 Obviously, each item in the list must have a value in the range
 0..FFH and it is left to the programmer to ensure that this is
 so.
 The form of the statement is :
 [label] db [comment]
 It reserves and initialises one or more bytes to the
 sequence of values given by the expression list. The label,
 although usual, is optional and the expression list is one or
 more expressions separated by commas. There is no limit on the
 length of the expression list except that imposed by the line
 length of 80 characters.
 A string may be used as a shorthand form of an
 expression list, when all the items in the list would otherwise
 be character expressions.
 However, while string expressions may be composed of any
 number of characters, other expressions must evaluate to values
 which will fit into a one byte storage element.

 e.g. string db 'abcdef',cr,lf
 junk db -10H,+13,2345 ;illegal (2345 too big)

 5.2 dw (or defw).
 This pseudo-operator defines a word (two bytes) or words
 to have the values calculated from the list following. Each item
 in the list must have a value which will fit into one word but
 unlike the "db" statement strings are not allowed. It is left to
 the programmer to ensure that this is so.
 The form of the statement is :
 [label] dw [comment]
 It reserves and initialises one or more words to the
 sequence of values given by the expression list. The label,
 although usual, is optional and the expression list is one or
 more expressions separated by commas. There is no limit on the
 length of the expression list except that imposed by the line
 length of 80 characters.

 5.3 ds (or defw).
 This pseudo-operator reserves a sequence of memory
 locations for future use.
 The form of the statement is :
 [label] ds [comment]
 It reserves, but does not initialise, the number of bytes
 given by the result of the expression. The label, although usual,
 is optional.

 5.4 equ.
 This pseudo-operator defines a name (label) to represent
 a constant value.
 label equ [comment]
 defines the label to have the (constant) value of the expression
 following. The expression must evaluate to a value in the range
 0..FFFFH so as not to exceed the 2-byte storage space allowed
 for it in the symbol table. Strings are not allowed.
 e.g. lf equ 10 ;decimal value
 cr equ 0DH ;hex value
 string equ 'abcdef' ;illegal

 5.5 include (or read).
 The "include" statement allows source language statements
 to be read from a file other than the original source file. It
 takes the form:
 [label] include :. [comment]

 or [label] read :. [comment]
 where is a valid disc drive letter,
 is a valid CP/M file name,
 and is a valid CP/M file type.
 The supplementary source file must obviously contain
 valid assembly language statements but must not contain an "end"
 statement unless this is meant to be the last line of the entire
 program.
 The optional label may be included, but it is rather
 pointless, if not dangerous.
 "include" files may be nested to a depth of 4. This can
 be altered easily.

 5.6 if.
 An "if" statement signals the start of statements which
 are to be conditionally assembled. It has the form:
 [label] if expression [comment]
 The expression should have only the values (=1)
 or (=0). If it has any value other than 1 it will be
 taken to have the value .
 When the expression is "true" the lines following the
 "if" statement will be assembled in the normal manner until an
 "endif" statement is encountered.
 If the expression following the "if" has the value
 the source lines following it will be ignored until an
 "endif" statement is encountered, after which normal assembly
 will be resumed. The list file, if any, will contain the
 ignored lines, but they will have no operation codes entered
 against them.

 5.7 endif.
 This statment signals the end of a section of the
 program which is to be conditionally assembled. It takes the
 form
 [label] endif [comment]
 It will always cause normal assembly to resume.

 5.8 list
 This pseudo-operator takes one or other of the arguments
 "on" or "off". If the argument is "on", a listing file is
 created on the disc on which the source file resides. This
 listing file continues until the end of the assembly or until
 another "list" operator with the argument "off" is encountered.
 At the start of an assembly the list file is considered
 to be turned "off" and will remain so until a "list on" statement
 is encountered.
 The "list" operator turns the assembler output listing
 file on or off.
 [label] list on ;turns on the listing file
 [label] list off ;turns off the listing file
 The list file has the same name as the assembly language
 source file but the type (extension) is changed to ".LST". It
 will thus be on the same disc as the source file.
 If the list file is already "on", further "list on"
 commands will have no effect and similarly for "list off"
 commands.
 When the list file is turned on, a file is created
 containing the following information:
 the number of each line,
 the program counter value at the start of the instruction,

 the code generated by the assembler for the statement,
 the text of the statement itself.
 If the statement preceded by the line number etc. is
 longer than 80 characters it is truncated to fit on an 80 column
 line. An example of the contents of a list file follows.
 1 list on
 2 ;
 3 (0000) label equ 0
 4 (0001) true equ 1
 O 5 0100 false eqq 0
 ^ ***** Op-code error *****
 6 ;
 7 (0001) debugs equ true
 8 ;
 9 ;
 10 0100 org 100H
 11 ;
 12 0100 (0010) aaaa ds 10H
 13 0110 if debugs
 14 0110 3E0A ld a,10
 15 0112 61626364 db 'abcd'
 16 0117 0600 ld b,0
 17 0119 3620 ld (hl),' '
 18 011B (0010) bbbb ds 10H
 19 012B endif
 20 012B 3E00 cccc ld a,0
 21 ;
 22 012D end

 5.9 org.
 This statement defines the starting address (origin) of
 any section of the program. It has the form:
 [label] org expression [comment]
 and the expression,
 which must have a value in the range 0..FFFFH gives the
 starting address of the section of program.
 A program may have more than one "org" statement but a
 new origin may not be less than the current value of the program
 counter, i.e. the program counter must not be driven backwards.
 org 100H
 . .
 . .
 . .
 org 1000H
 . .
 . .
 . .
 org 800H ;illegal, (< previous pc)

 5.10 forg.
 This pseudo-operator defines a "false origin". It
 allows code to be generated which will be executed at some
 address other than that at which it is assembled. It was
 included so that a loader could be included in a version of the
 CP/M CCP which had its' origin at 100H. The loader was to be
 included in this file but was to be transferred to E000H before
 it was executed. If it had had an origin of E000H then the file
 would have been more than 60k long.
 This statement defines the starting address (origin) of
 a section of the program. It has the form:
 [label] forg expression [comment]
 and the expression,

 which must have a value in the range 0..FFFFH, gives the
 starting address of the following section of program.
 The "forg" address is nullified by another "org"
 pseudo-operator.

 6.0 Known bugs.
 Latest revision: 1 Mar 1986
 no check on expression size.
 some (ix+d) forms are not checked properly.

 If further bugs are discovered please notify the author,
 preferably with the fix, giving the source code producing the
 bug and as much other relevant information as possible.

 7.0 Files on this disc.
 z80asmb.z80 the main source code file for the assembler
 z80asmb.z81 an "included" source code file for the assembler
 z80asmb.z82 an "included" source code file for the assembler
 z80asmb.com an executable file of the assembler
 z80asmb.doc this file

 8.0 Expression syntax.
 Expressions follow the syntax diagrams below:
 expression
 |
 |
 |----------------------- string -----------------
 | |
 ---------------- arithmetic expression --------------------->>
 arithmetic expression
 | --- "|" ---
 | |--- "~? ---|
 | |--- "-" ---|
 | |--- "+" ---|
 |---- "-" ------ | |
 |---- "+" ------|--- term ------- term ---
 ---- "~" ------ |
 --------------------------->>
 term
 | ----- "&" -----
 | |----- "\" -----|
 | |----- "/" -----|
 | |----- "*" -----|
 | | |
 ------------------- factor ------------------------------>>

 factor
 |
 |------------- "'" -- character -- "'" ---------------
 | |
 |----------------------- name ------------------------|
 | |
 |---------------------- number -----------------------|
 | |
 |----------------------- "$" -------------------------|
 | |
 ----- "[" ---- arithmetic expression ---- "]" ----------->>

 number
 | -------------
 | | |
 ------------ digit ------------------ "H" -----

 |----- "B" -----|
 |----- "D" -----|
 ------------------------->>

 name
 |
 | ---- digit ----
 | |---- letter ---|
 | | |
 ---- letter --->>

 string
 | ---------------
 | | |
 --- "'" -- character ----- character ----- "'" ---------->>

 The arithmetic operators are:
 monadic operators:
 "+" no effect
 "-" 2's complementation
 "~" 1's complementation
 dyadic operators
 "+" addition
 "-" subtraction
 "~" exclusive OR
 "|" inclusive OR
 "*" multiplication
 "/" division
 "\" modulus
 "&" AND
 The multiplicative operators * / \ and & take precedence
 over the additive operators + - ~ and | but if operators
 are of equal precedence then evaluation is from left to right in
 the statement. Expressions within brackets are evaluated first
 and may be nested to any reasonable degree, the innermost
 expressions being evaluated first.

